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NOMENCLATURE

a Panel chord

ak Modal amplitude for panel transverse displacement

N

w(x,t) = a (t) sin ka

k=l

ak Dimensionless modal amplitude, a /h

ak Scaled modal amplitude, ()2 k

AO- Vector of initial modal amplitudes and velocities,

[al(0) , ... , aN( 0) 1i (0) , ... , N(0)1]

bR , V b, bk  Modal amplitudes for in-plane displacement

ck Dependent variable obtained by applying variation of

parameters to governing panel equations

ck Variable ck  , transformed according to Kamel's

perturbation method

C1,0 Initial magnitude of ck

Ck Combinatorial coefficient,

C 1 , C2  Cubic terms in panel governing equations

D Plate modulus, Eh3/12(l -v2 )

D1  . Complex constant defined in Eq. (6.27), D1R + iD11

D2  Complex constant defined in Eq. (6.26), D2 R + iD 2 1

DR Real constant, DIR/D2 R
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E Modulus of elasticity

E Panel total energy

E' Dimensionless panel energy, Ea3/Dh2

Perturbation coefficient vectors - see Eqs. (6.5)

fk, th component of k

F In-plane generalized force

F Transverse generalized force

gk) Perturbation coefficient vectors - see Eqs. (6.1)

(k) th component of g(k)

h Panel thickness

i (-1)2

K Running spring constant, panel in-plane restraint spring

M Free-stream Mach number

N Number of modes used to approximate panel transverse

deflection

p Pressure

pm Free-stream pressure

nAp Static pressure difference across panel; positive if

cavity pressure exceeds free-stream pressure

4Ap Dimensionless static pressure difference, pa /Dh

Ap . Scaled static pressure difference, (d)2 Ap
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q Free-stream dynamic pressure, pU /2

Q1 'Q2  Quadratic terms in panel governing equations

R Applied in-plane load
x

R Dimensionless in-plane load, R a2/D °

x x

R0 Time-varying applied in-plane load

R0  Dimensionless in-plane load, ROa2/D

R0 Scaled in-plane load, (I -a) R0

t Time

u Panel in-plane displacement

U Free-stream speed

k Linear-system eigenvector at X = Xc

Uk, £th component of k

w Panel transverse displacement

w Dimensionless displacement, w/h

'k Transformation vectors defined in Eqs. (6.3)

Wk,1 Ith component of 1k

x Panel in-plane coordinate

z Panel transverse coordinate

a In-plane restraint parameter, K[K + Eh/a(l - v2 )]-

Ratio of specific heats, y = 1.4
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E Small parameter

C Perturbation parameter, (X -Xc)/

E2  Perturbation parameter, R/7 2 - E1(i + R/7f2)

G1 Phase angle

01,0  Initial phase angle, e1 (0)

X Dynamic-pressure parameter, 2qa3/MD

1 Critical value of X determined from linear theoryc

Mass ratio, pa/p h

v Poisson's ratio

P Free-stream mass density

0m  Panel mass density

ok Eigenvalues of linear system at X = X

T Dimensionless time, t(D/pha-)2

tScaled time, (X)2 r

( ) Derivative of dimensional quantity with respect to

t ; derivative of dimensionless quantity with re-

spect to T ; derivative with respect to - in

Section VI

( ') Vector
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I. INTRODUCTION

This report constitutes a final report on research into the effects

of hypersonic nonlinear aerodynamic loading on panel flutter, supported

by the National Aeronautics and Space Administration under Grant NGR 05-

020-102, from September 1, 1965 to August 31, 1970. The technical moni-

tor of this grant was Mr. Peter A. Gaspers, of the Nonsteady Phenomena

Branch at Ames Research Center, whose support and counsel are gratefully

acknowledged.

The initial motivation for this investigation was provided by the

results of some high-Mach-number panel-flutter experiments described in

Ref. 1. In these experiments, in-plane tension was used to stabilize a

panel until steady-state tunnel conditions were reached. The tension was

reduced until flutter occurred and then increased until flutter ceased.

It was noticed that the tension at which flutter ceased was in many cases

consistently higher than that for which flutter occurred initially, so

that there was an effect analogous to hysteresis evident in the relation-

ship between flutter speed and in-plane tension. Such an effect is con-

sistent with the effects of nonlinear aerodynamic loading at hypersonic

speeds, which are easily and accurately represented for panels by non-

linear piston-theory aerodynamics. In general, these nonlinear aero-

dynamic loads are of the "soft" type, in that they produce forces aug-

menting any transverse panel motion. On the other hand, the more fa-

miliar geometric panel, nonlinear effects are of the "hard" type, in that

they produce in-plane panel loads that resist transverse displacement.

It thus seemed conceivable that there would be circumstances, perhaps

exemplified by the experiments in Ref. 1, where the aerodynamic non-

linear effects would in part be dominant and lead to the hysteresis

effect observed. There is also the broader question of stability to

large disturbances: Refs. 2 and 3 deal with this in different ways.

In Ref. 2, Bolotin and co-authors showed that nonlinear hypersonic

aerodynamic loads can produce situations where a panel is unstable in

a parameter region where stability would be predicted with linear aero-

dynamic loading, provided the initial disturbance is of sufficient

1



magnitude. In Ref. 3, Librescu was able to demonstrate a similar effect,

albeit not so precisely, with an analysis based on Lyapunov stability

theory. This question was pursued further, with more realistic panel

parameters, as part of the study described in this report. The effects

of nonlinear aerodynamic loads on panel postcritical response were also

surveyed, and results have been published in Ref. 4. The effects of

aerodynamic nonlinearities on stability were evaluated by determining

constant-initial-energy amplitude-sensitive stability boundaries and

comparing them with the corresponding linear stability boundaries. Pre-

liminary results were presented in Ref. 4, and a parametric survey was

presented in Ref. 5. A final section treats an attempt to develop an

alternative method of analysis for systems where amplitude-sensitive

instability is possible; much of this section is the work of Dr. Sayed

D. Hassan. More detailed summaries of work performed during the first

four years of the grant period will be found in Refs. 7-10.

Another important effort supported by the grant concerned the ef-

fects of a viscous boundary layer on unsteady panel aerodynamic loading.

This work is described in detail in the Ph.D. dissertation of Dr. J. I.

Lerner, and is incorporated into this report by reference (Ref. 6).

The author is greatly indebted to Professors Holt Ashley, fean Mayers,
and Krishnamurty Karamcheti for many helpful discussions, to Mr. James
Stein for valuable computer-programming assistance, and to Dr. Ahmed A.
Kamel for consultations concerning his perturbation method.
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II. EQUATIONS OF MOTION

Consider the two-dimensional panel, or plate-column, illustrated in

Fig. 1. The supports are hinged, and the in-plane motion at one end is

resisted by a distributed spring of constant K .* The panel is loaded

by a static pressure difference Ap , an unsteady pressure.difference

p(x,t) -pm , an initial static in-plane applied load Rx , and a sub-

sequent time-varying in-plane applied load R0(t) . The unsteady pres-

sure is approximated in hypersonic flow by a third-order piston-theory

expression

S- M U at 5x U t t x

+ +12 )M x i (2.1)
12 x

A third-order term is included, because such a term will result in work

done through a simple-harmonic cycle of panel motion, whereas the second-

order terms will not. The pressure is assumed to act normal to the in-

stantaneous panel surface. Since the structural representation of the

panel allows for significant rotation of panel elements about a span-

wise axis, order-of-magnitude consistency then dictates including as

well as transverse aerodynamic-loading an in-plane aerodynamic load

[(P -P)L- pI](Lw/x) , where the subscript L denotes the linear

portion in Eq. (2.1).

The panel transverse displacement is represented as a series of

assumed modes satisfying the geometric boundary conditions of zero

See the Nomenclature for definitions of symbols.



displacement and curvature at each end:

N

w(xt) a= a(t) sin kx (2.2)

k=l

A consistent assumed-mode expression for the in-plane displacement is

given by

2N
x k+ xk(t)

u(x,t) = [bR + b0(t)] a k(t) sin a(2.)

k=l

Here bR is the initial panel in-plane displacement at x = a due to

the application of the in-plane load Rx , and b0 (t) is the in-plane

displacement at x = a resulting from the subsequent unsteady panel mo-

tion. The reasons for this division will be discussed below.

Hamilton's principle is now used to derive the Euler-Lagrange equa-

tions of motion, as outlined in Ref. 7. The potential energy of the sys-

tem is given by

1 Eh )u 1 )2 2 w
W - 2 - + - - + D 2 dx

2 1 - v ax 2 x )x

- RxbR+ (Rx + RO) b - - Kb (2.4)

This expression represents the strain energy of the panel diminished by

the potential of any conservative external loads. The structural repre-

sentation of the panel is consistent with the assumptions of small strain,

a linear stress-strain law, and element rotations whose squares are small

relative to unity (see Ref. 4), and it leads to the familiar von Karmn

structural operator. In the potential, it has been assumed that the re-

straint spring is not attached until after the load R is applied; thisx
is an artifice for ensuring that in-plane tension is in the panel even
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when K = m :. The unknown bR is needed simply to account for the

corresponding panel displacement. This formulation also implies that

the panel is initially restrained from buckling, should supercritical

compressive in-plane loading be applied.

The kinetic energy is given simply by

a2

T - h f ( dx (2.5)

0

The kinetic energy associated with both in-plane motion and rotary in-

ertia has been neglected. In-plane inertia would have to be included

if parametric stability of the panel, under the load R0 (t) , were to

be studied. Here RO is included only to model the varying tension

used in the experiments of Ref. 1, where in-plane inertia clearly was

not a factor. Rotary-inertia effects are important only if the wave-

length of the panel flexural mode is comparable in magnitude to the

panel thickness; such small wavelengths are not expected for panel

flutter.

The transverse generalized forces are

a

(F k  f (p -p) + ] sin k dx , k = 1,2, ...,N (2.6)

0

Note that unsteady cavity effects, which in some cases are quite signif-

icant, are not taken into account here. The in-plane generalized forces

are

a

(Fx)0 =f [(P- P)L- a  dx
x J Lx a

0

(2.7)

Sa

(F = f (p L - L sin ha dx , k = 1,2,'...,2N

0
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The assumed-mode series for u and w are inserted in the expres-

sions for potential energy, kinetic energy, and generalized forces. The

Euler-Lagrange differential equations then become, after considerable

manipulation,

W Eh
- =0 =R- b- x 2 R

abR  x a(l - v )

(2.8)

w Eh(bR + b )
- + (F) = R + R - Kb -

b a(1 - v)

(continued)



2 N 2q mn(-)m+n N N 2 2+ n )[(-)m+ -]
n2a2 + 2 an - -- _ am m a m 2 2-) mEh_( I  2- nm area a a +- 22 aa

4a (1 -v) EMU m -n 2MU Ma - n
n=l m,n= 2MU m=l m,n=l

S m2 - a (2.9)
+ - m +a - a (2.9)

2Ma m=l n=l

- --- + (F)k = 0 2 b + m na a + 2 mna a
xk I a 2  m n m n

bk 2a a m,n=l mn=1

m+n=k m-n=k

N N N N 2 2 2 k+m+n
2q mn(k -m -n 1-(-1)

+ a maa - mama n + maan a 2[k)2]k2 m n)2 a an

m,n=i m,n=1 mn=1 m,n=l

m+n=k m-n=k n-m=k

N k+n
kn[l - (-1)

Ap 2 2 a k =1,2,...,2N (2.10)

k -n
n=l

d )T )W 1 Eh Tk
.. + (F)k = 0 = - - Omhaa k  

2  
R + 0) ak (continued)

dt a k 2 (F2



N 4 N 2-2

+ mna b + mna b + . Ek na + 4k Imna a-
4a2 mn mn 32a n amn

m=l n=l m=l n=l n=l i,m,n=l
m+n=k .m-n =k £+m-n=k,m n

+ 2k Imna aman + 3 mna a a + mna a an
E2 ( dn I mn

,,m,n=l T,m,n=l ,m, n=l

£+m+n=k £-m-n=k m+n-i=k

DTk 4  2q N kn[1 - (-1)k +
n ]  qa a[ll - (-ll) k

2a5  k k -n MU k-r
n=l

Co (7 + l)q -N mn(k2m2-n2) k+m+n N

....... a a.. + ma a
mnl_- (mn[2 -(n 2 ] [k2 _(re+n)2 ] aan a

2 2U
n=m, n=l

m+-n=k

N N 2 N mn[ l k+m+n+ (a -n)k mama - [ m ) [ _(m )] n

maa + m a ma acontinued)
2 an k m (- n) 2 [k (m + n) 2M(continue

mn=l m,n=l m,n=l
m-n=k n-m=k



(7 + 1) qMk Nk++m+n

2 [1 - (-1)k ]
24a 2

, m, n=l

2 2 1 2 21 2 2 1 k 1,2,...,N (.11
x [k2- (-m-n) ] + 2[k - (~-m+n) ]I + [k - (+m+n) I a aa , k = 1,2,...,N (2.11)

a'ama



Multiple summations in these equations are indicated by multiple indices

on a single summation sign, and the terms are arranged so that any com-

bination of indices giving a zero denominator is to be excluded from the

summation. (This convention will be observed throughout this report.)

Equations (2,.8) and (2.9) are used to eliminate bo, bR , and the bk
in Eqs. (2.11), and this produces a set of second-order, quasilinear

ordinary differential equations governing the ak . After nondimension-

alization and copious manipulation, this set becomes:

10



S2 2N N k+

S 2 3Mr 2 2 2 ki -l

k1 - ((l_)] 1)Tnk h Im(k2 - 1-m )[1 - (-i) km

k7I 4 a [k 2 (-2m)2] [k -(2 +m) 2  am

7r(y +1) h
+ Ma l a Iam + (mam a - a am

8 a ! M
m=l 1,m=1

2+m=k -m=k

k(7+1) (h 2m[l- (-1)
k + £+m

+ - a

2 \a ,m (k- ) - (m -n)2][(k - )2 (m + n) ]  n

l,mn=l

_ 2 2 2 k+)+n+n

N 2mn[ (k )2 m2 [1 - (-1)k- - +m+n

,mn [(k + )2 - (m -n)2 [(k + ) - (m + n)2] a m n(continued)



2 7 N 2 2sr m+n 2 N2 T h mn(m+n 2 ) [ (-1) -1m + n  ]2
+ k ak ( aa + - m 22a

2 an=i (M2 n22 m n 4 m
mn=l m=l

;k 2;
+ - )M a aman + (na am -ma a )8 ~ m+n m-nmL ,m, n=l -,m, n=l

L-- (m+n) I =k I - (m-n) =k,>n

m . N
+ aa a +a (nana -mamanIn n m n n m )

+n m - n
L,m,n=1 L,m,n=1
I+m+n=k i+m-n=k,m>n

2k2 h2 (-a k  mn(-l)m+n . 1

+ Mak m 2 -n 2 aman 4 amam

Smn=1 m=1

tk h2 N m[l - (-1)k++m -(-1)k++m

2 2 A (k - )2 -2 a am (k )2 2 a am (continued)a ml (k - ) -m 2  A (k+ ) -m
R~~m£ m~nl



7k 2 h -(- )

+ - (5AP (i-t) ak an
2 a, nn=l n

2 + l)k h 2 N
+ ) M - [I ( - I)k+ +m+n] [k 2  -m-n)2 -1 + 2[k2 - (,-m+n)2] -

48 a E
Im, n= 1

+ [k 2 - (£+m+n)2 -1I aaa = 0 k = 1,2,...,N (2.12)Imn



With the exception of a slight difference in the definition of a , and

the time-varying in-plane load RO , the terms up to and including the

first appearance of p are the same as those derived by Dowell (Ref. 11):

the von KarmAn nonlinear structural operator for the panel, with linear

piston-theory aerodynamic loading. The system parameters for this com-

bination of terms are X , /M, a, p , Rx , and RO . Furthermore,

Dowell pointed out that these equations can be recast so as to eliminate

the explicit appearance of a , so that only one (nonzero) value of a

needs to be considered. With the addition of the nonlinear aerodynamic

terms, the situation becomes more complicated. A new parameter, h/a ,
appears explicitly, and ± and M must be specified separately. Also,
the explicit dependence on a can no longer be eliminated. The nonlinear

aerodynamic terms appear in Eqs. (2.12) in the following order: first,

those arising from the terms in (Fz)k dependent on (w/ x)2 , (w/8x) ,

( w/ t) , and ( w/ t) , respectively; secondly, those arising from the
terms in (Fx)0  and (Fx)k dependent on ( w/ x)2 (w/x) , (w/t) ,
and Ap ( w/x) , respectively; finally, those arising from the terms in
(F )k dependent on (w/6x) 3  . Note also that the panel geometric non-
linear terms are cubic in the ak , whereas the nonlinear terms from
(Fz)k  are linear in h/a and quadratic in the ak , and those from

(Fx)0  and (Fx)k  are quadratic in h/a and cubic in the ak
For the complete equations, the functional dependence of the panel

transverse displacement can be stated as

w(x,t) hFn , T;AO,,-1,M,,, 7P, , Rb 0 (2.13)

The method of solution is to integrate Eqs. (2.12) from given initial con-
ditions A O and to observe the resultant panel motion versus time. The
use of piston theory, with its point-function relation between pressure
and panel motion, makes this possible. The initial state-space vector

A0 will not.always govern the asymptotic behavior of w ; instances
where this does occur will be discussed below. The computer program to
integrate these equations was set up so as to allow individual nonlinear
aerodynamic terms to be left out or included, as desired.

14



III. VERIFICATION; PRELIMINARY ASSESSMENT

OF AERODYNAMIC NONLINEARITIES

3.1, Comparison with Previous Results

In order to check the numerical integration, a few test cases were

run with linear aerodynamic loading, and the results were compared with

those from Ref. 9. Figures 2 and 3 show the dimensionless panel dis-

placement at the three-quarter chord vs. dimensionless time for values

of system parameters noted on the figures. Figure 2 corresponds di-

rectly to Fig. 2 of Ref. 11, and the limit-cycle amplitude taken from

Fig. 3 checks that given in Fig. 5 of Ref. 11. All the other test cases

showed similar good agreement.

3.2 Behavior with Zero System Damping

Some.interesting and unanticipated problems were encountered when

the equations with linear aerodynamic loading were solved for zero sys-

tem damping. Figures I and 5 show the panel response for the same set

of initial conditions and system parameters used for Figs. 2 and 3,
except that p = 0 . After an initial transient shown in Fig. 4, the

response becomes periodic but not simple harmonic, as is evidenced in

Fig. 5. The response curve illustrated in Fig. 5 continues indefinitely

without change, and the peak amplitude is different from that shown in

Fig. 3. That the system does demonstrate instability for this set of

parameters is illustrated in Fig. 6. Here the initial displacement at

the three-quarter chord is smaller than that in Figs. 2-5 by a factor

of approximately four, and the amplitude clearly grows with time. It

then decreases, and the same process is repeated again (but is not shown

here). Note also that the maximum amplitudes are different for the dif-

ferent initial conditions. This does not mean, however, that a unique

limit-cycle amplitude and frequency are not associated with a given set

of (supercritical) system parameters. In Fig. 7, the panel response is

shown for N = 2 and for supercritical system parameters. The initial

15



conditions in this case were obtained from a harmonic-balance solution.

It is seen that there is no initial transient, and the panel response

continues at the same amplitude. Solutions for other values of system

parameters exhibit the same behavior, and it can therefore be concluded

that the method of calculating the panel motion with time will produce

a limit cycle of constant amplitude for zero system damping only if the

initial conditions correspond exactly to the limit-cycle modal ampli-

tudes. For any other initial conditions, the panel oscillates between

stable and unstable states. If, on the other hand, the system parameters

are subcritical, the panel will oscillate without decaying, and the peak

amplitude is determined by the initial conditions. Figures 8 and 9 show

the panel displacement at the three-quarter chord for a subcritical value

of X and different initial conditions. Here it will be observed that

the peak amplitudes never exceed the initial amplitudes, although the mo-

tion is not simple harmonic.

These results can also be interpreted with the aid of some general

stability considerations for autonomous systems (Ref. 12). The panel

equations for zero system damping describe a system whose state is

uniquely determined by the 2N modal amplitudes and velocities ak

ak , k = 1,2,...,N , or in other words by a point in the 2N-dimensional
2N

space E . The origin of this space is clearly an equilibrium point
a

- it corresponds to the panel in a flat, undisturbed state - and it is

desired to examine the stability of the panel in the neighborhood of this

state. In brief, the origin is stable if for any sphere S(R) of radius
2N

R in E ,centered on the origin, there exists another sphere S(r)

of radius r 5 R such that any motion originating in S(r) remains in

S(R) ever after. This stable behavior is exhibited in Figs. 8 and 9.

Reducing the initial amplitude reduces the maximum resultant amplitude,

so for any given bound on the amplitude the initial amplitude can be re-

duced to keep the resultant motion within the bound. On the other hand,

if such a sphere S(r) cannot be found, the origin is unstable. Figures

4, 5, and 6 .illustrate this unstable situation. It is evident that there

is an amplitude that the resultant motion will exceed, no matter how small

16



(but finite) the initial amplitude is. These same conclusions can be

drawn when the initial conditions are broadened to include nonzero in-

itial velocities, and the reader is referred to Ref. 12 for the full,

precise definitions of stability and instability.

3.3 Isolated Effect of Aerodynamic Nonlinearities

The effects of aerodynamic nonlinearities were first considered by

introducing into the equations of motion only the term from (F )k  pro-

portional to ()w/kx)2  , with the in-plane restraint parameter a set

to zero, so that no panel geometric nonlinear terms were present. For

this single nonlinear aerodynamic term, only the new system parameter

M(h/a) is required. In Fig. 10, the panel is observed to be stable

for X = 330 and initial conditions given by a1 (0) = - a2 (0) = 1.71

In Fig. 11, the panel diverges with all system parameters unchanged and

a slight increase in the initial deformation, to al(0) = - a2 (0) = 1.72

The divergence in this case is into the cavity, as expected, since an

aerodynamic pressure proportional to (w/x)2 produces an increased

pressure on the free-stream side of the panel for any panel displacement.

Here, then, the asymptotic panel behavior is clearly governed by the in-

itial conditions. On the other hand, with linear aerodynamic theory the

panel would eventually return to its initial flat state, no matter what

initial conditions would be given. (The classical linear critical value

of X for this case is approximately 343 - see Ref. 11, for example.)
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IV. EFFECT OF AERODYNAMIC NONLINEARITIES

ON POSTCRITICAL RESPONSE

Of interest here is how the aerodynamic nonlinear terms affect the

motion and peak stress levels of the panel as it oscillates at a super-

critical value of X . Comparisons were made between the limit-cycle

frequency and amplitude obtained with the nonlinear aerodynamic terms

and those obtained with linear aerodynamic terms. Various combinations

of system parameters, roughly characteristic of those found in practice,

were tried. Various combinations of nonlinear aerodynamic terms were

also tried, in an effort to identify those terms that would be important.

It was soon found that for the system parameters surveyed only two had a

significant effect - those resulting from terms in (F )k  proportional

to ( w/ x) and ( w/ x) ( w/ t) . With only these aerodynamic non-

linear terms in Eqs. (2.12), further simplification can be achieved

through the transformation used by Dowell in Ref. 11. With k= ()2 ak,
RO = (1 -a) RO , and p = (a) Ap , the parameter a can be eliminated

explicitly from the equations, and in addition to Dowell's parameters a
1

single new one appears - Mh/a(a) . This parameter then serves to mea-

sure the relative importance of nonlinear aerodynamic effects, since it

ratios the principal factor governing the nonlinear aerodynamic terms to

the one governing the panel geometric nonlinear terms. The functional

dependence of the panel transverse displacement simplifies to

w(x,t) = [h/(a)e] Fnlx/a, T ; i /M , Mh/a(a) , p, R, R

(4.1)

Postcritical panel response with linear aerodynamic loading was com-

pared to that with nonlinear aerodynamic loading for various combinations

of system parameters. A maximum value of 0.05 was taken for Mh/a (say,

h/a = 0.005 and M = 10.0 ). A typical comparison is illustrated in

Fig. 12, which compares the growth in peak limit-cycle amplitudes at

x/a = 0.75 as a function of X for linear and nonlinear aerodynamic
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loading. Values of other system parameters are given in the caption.

For the linear aerodynamic case, the panel oscillates as far into the

airstream as it does into the cavity. With nonlinear aerodynamic loads,

the peaks into the cavity (negative w) are greater, and those into the

flow (positive w) are less. This effect is caused primarily by the non-

linear aerodynamic term dependent upon (w/ x)2  , which provides an

overpressure, tending to push the panel into the cavity, as a result of

any deviation of the panel from its flat initial position. However, any

changes brought about by the nonlinear aerodynamic loading are quite

small, even well into the supercritical regime, and the frequency of

oscillation is virtually unchanged.

Since the in-plane restraint parameter a is the key parameter

governing the influence of the panel geometric nonlinearity, one might

expect that greater differences would be observed as a is reduced. A

linear-nonlinear aerodynamic comparison is shown in Fig. 13 for X = 550

and varying a . It can readily be observed that the nonlinear aero-

dynamic terms do have a relatively greater effect, to the extent that the

peak displacement into the external flow at x/a = 0.75 is reduced some

23% for a =.0.1 . On the other hand, the corresponding peak displace-

ment into the panel is increased by very little, and the frequency re-

mains virtually unaffected.

Another important consideration is the change in stress caused by

nonlinear aerodynamic loading. The stress in the panel can be written

in terms of modal amplitudes and other system parameters as (Ref. 11)

2 N kq
1 -v z k7Tx

T 2 - (k) 2 ak sin --
E(h/a) 2  h

k=l a

R + (1 -a)R 0  a N+ x 0+12 + (klra) 2  (4.2)

k=l

The maximum or minimum of o at any instant of time occurs for

z = + h/2 , so it is seen that the stress distributions for maximum
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and minimum stress will plot as curves symmetric about a mean, the stress

due to stretching, given by the constant terms in Eq. (11.2). Figure 111

compares these stress distributions in the panel, at the instant the

displacement at x/a = 0.75 reaches a peak, for a = 0.1 and X = 550 .

The maximum tensile and compressive stresses occur at x/a - 0.85 , and

the nonlinear aerodynamic loading increases these stresses by at most 5%.

For aluminum, E ' 10 psi and v = 1/5 ; with h/a = 0.005 , a stress

o of 60 corresponds to a dimensional stress o of.16,900 psi, which
x x

is well below the yield stresses of approximately 60,000 psi in tension

and o0,o00 psi in compression. Convergence studies on stress by Dowell

(Ref. 9) indicate that six modes (N = 6) may not be adequate for

stresses, although this number is satisfactory for displacements. How-

ever, it is not felt that using enough modes to converge the stresses

would alter the conclusion that the assumption of stress levels within

the linear range is a valid one.

Another key assumption in the derivation of the panel equations of

motion is that (w/x)2  is everywhere much less than unity.. In terms

of modal amplitudes, this is

-2 2 N 2
"w\ / h kTx

E)- k7rak cos - - (4.)
x a k= a

This distribution was calculated for various large-amplitude panel states.

Generally, the largest values were at x = a , and the largest of these

calculated was approximately 0.01, which was calculated from the mode

shape corresponding to the nonlinear-aerodynamic stress distribution of

Fig. 14. Values calculated for other cases and over other portions of

the panel were much smaller, thereby strongly suggesting that the

"moderate-rotation" assumption is also justified.

One final check involved testing the accuracy of the numerical in-

tegration. This was done by integrating the equations of motion backward

in time, with initial conditions given by the state of the panel at some

instant during a previous calculation. Panel motions with time could
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then be compared. The parameter in the numerical-integration subroutine

governing acceptable relative error between integration steps was kept

small enough so that no appreciable differences arose between forward

and backward integrations over the longest time intervals contemplated.

The results presented in this section are representative of the re-

sponses calculated for a variety of conditions. From this evidence, it

can be concluded that the influence on postcritical response of nonlinear

aerodynamic loading, of the type considered herein, is minor. The post-

critical motion is generally such that the aerodynamic terms quadratic

in awax do very little net work over a cycle, and the cubic terms,

which would do work over a cycle, are not important unless Mh/a is

unrealistically large. It was observed, however, that transient mo-

tions - such as those that were calculated before steady-state ampli-

tude and frequency were attained - were affected markedly by the non-

linear aerodynamic terms. It is therefore entirely possible that these

terms would be very important when panel transient response is studied

at hypersonic speeds. The two nonlinear aerodynamic terms used in this

section were the only ones retained for subsequent studies, except for

occasional check runs to ensure that other terms were not contributing

significantly to the results.
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V. EFFECT OF AERODYNAMIC NONLINEARITIES

ON STABILITY

5.1 Comparison with Experiment

As a first step towards reproducing the experimental conditions of

Ref. 1, as.discussed in Sec. I, it was.decided to study the panel re-

sponse as the in-plane applied load was varied across the linear sta-

bility boundary. This involves scheduling the time-varying load R0

with time; a typical case is shown in Fig. 15. The panel was initially

set in motion at point A , on the stable side of the linear stability

boundary. *Then the in-plane load was decreased to point B , on the

unstable side, and held there until the motion of the panel was estab-

lished. Finally, the load was increased to point A , where the non-

linear aerodynamic terms dictate the resultant stability characteristics.

Figure 16 presents a time history of the displacement at x/a = 0.75 for

values of X and in-plane load corresponding to point A 'in Fig. 15.

The motion shown is that which results after the in-plane load has been

cycled from point A to point B and back to point A . Figure 16

shows that the energy imparted to the panel while the load is at point

B is enough to cause instability with the load at point A . To

stabilize the panel, it would be necessary to increase the load even

more.

The scenario described above is consistent with the experimental

observations of Ref. 1, but the parameters used were not comparable.

The next step was then to attempt a closer comparison by looking for an

amplitude-sensitive instability with parameters corresponding to the ex-

perimental conditions. The following parameters were chosen: Rx = 160 ,

X = 2000 , M= 10 , p = 0.1 , Ap = O , and h/a = 0.0005 . These values

give a condition that is just on the stable side of the linear stability

boundary for a panel on hinged supports. Experimental edge conditions

would be better represented with clamped supports, but the theoretical

differences between stability boundaries for these two' edge conditions
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are not really significant when the in-plane applied loads are as large

as they were in the experiments (see Ref. 1). The remaining unknown

parameter is a . Various initial amplitudes were used, appropriate

to flutter amplitudes observed experimentally (w " 10 in some cases),

and a was varied in order to see if these initial amplitudes would

produce an unstable panel motion. The only unstable motion that could

be produced was an oscillatory but divergent one, for values of C on

the order of 10- . These results indicate that nonlinear aerodynamic

influences are not the cause of the experimentally observed behavior,

since the value of a needed and the corresponding calculated unstable

motion are not consistent with the experimental setup or observations.

5.2 Constant-Initial-Energy Stability Boundary

After it was demonstrated that energy levels capable of causing

amplitude-sensitive instability could be generated by unstable panel

motion near the linear stability boundary, it was decided to consider

how the linear stability boundary - presented, say, in the X - Rx

plane with other parameters fixed - would be changed for a given level

of initial excitation.

Portraying analytically the dependence of the amplitude-sensitive

instability on A0 would be a formidable, if not impossible, task,

since it has 2N elements. One simplified approach is suggested by the

work of Dimantha and Roorda (Ref. 13). They investigate the stability

of nonlinear nonconservative systems with the direct method of Liapunov,

with Zubov's procedure for constructing the Liapunov functional. It is

not at all clear whether this method is applicable to the panel stability

problem; however, the ideas in Ref. 13 do at least suggest a meaningful

procedure for the numerical experimentation described in this report.

In principle, one can determine a stability boundary for the panel in

terms of the elements of A0  for fixed system parameters. This boundary

can be viewed as a hypersurface S in the phase space determined by the

elements of A0  . (Note that the origin of this phase space represents

the panel in its flat undisturbed equilibrium position.) Any combination
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of initial conditions that plots on one side of S will result in un-

stable panel motion, while a combination that plots on the other side

will result in stable motion. Dimantha and Roorda proposed to calculate

the minimum total panel energy on S , such that this minimum value E1
will determine a hypersphere that just touches S at one or more points

and is everywhere else on the stable side of S . The energy E1 then

provides an upper bound for the initial disturbance energy such that the

resultant panel motion is stable. In similar fashion, Dimantha and

Roorda also proposed to determine the maximum total energy on S

thereby determining a hypersphere of energy level E2  that gives a

lower bound on.the initial disturbance energy for unstable motion. The

reader is referred to Ref. 13 for the full details of this analysis. It

suffices to say here that these ideas suggest determining a nonlinear

stability boundary in the X - R plane for constant initial energy
x

and comparing this boundary with the linear stability boundary, which is

independent of the initial conditions.

The dimensionless panel energy is given by (Ref. 10):

a3  N 3 N

DhE' = a k + k 2aka
Dh 8

k=l k, 1=1

2 N 4 N

+ -Rx E ka k + - kai (5.1)

k=l k=1

Note that the time-varying applied load, R0  , is here set to zero.

The initial choice of energy level was that corresponding to supercritical

panel motion near the linear X - R stability boundary. It was furtherx
decided, purely arbitrarily, to set a1 (0) = - a2 (0) and to let these be

the only nonzero components of A . With E0 = 1750 and a = 0.1

the variation of al(0) = - a2 (0) with Rx is given in Fig. 17.

The remaining system parameters were then chosen, and a new stability

boundary was determined, as is shown in Fig. 18. This boundary was ob-

tained by integrating the panel equations of motion, with initial
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conditions determined as discussed above, and observing whether or not

the calculated panel motion persisted or died out past the initial

transient. The complicated nature of the dependence of this stability

boundary on the initial energy (and, ultimately, on A0  ) can be in-

ferred from .the shape of the boundary. As noted in Ref. 5, the onset

of the instability over virtually the whole boundary is characterized

by a strong traveling-wave component, quite similar to the "periodic

but non-simple-harmonic" behavior noted by Dowell (Ref. 11) for large

compressive values of Rx with linear aerodynamic loading. Observe

also that the maximum reduction in stability occurs for zero or slightly

positive (tensile) values of R . The behavior of the nonlinear sta-

bility boundary near R = - 0.5 ~T has not been explained.
x

5.3 Parametric Survey

The procedure of the previous subsection was then used to determine

unstable regions with variations in other system parameters. Figure 19

gives the variation of the value of X where instability first occurs

with both different energy levels and different modal content. For

E0 = 1750 , there are only minor differences in the critical value of

X among the. three sets of nonzero elements of AO that were examined.

Almost tripling the initial energy for one of these sets produced little

change in the critical value of X . For E0 = 3500 , there is an un-

stable band bounded by stable regions, suggesting the same sort of con-

tortions in the stability boundary near R = 0 as was observed in
2 x

Fig. 18 near R = - 0.5 7T .x

Figure 20 presents the effects of both positive and negative static

pressure differences for R = 0 and the initial conditions of Fig. 18.x

Negative values of Ap produce a static pressure tending to push the

panel into the cavity, reinforcing the deformation caused by the aero-

dynamic term proportional to (w/)x) 2  and slightly adding to its de-

stabilizing influence. Just the opposite occurs for positive values

of p .
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As would be expected, the parameter Mh/a(a)2  has a strong in-

fluence on the amplitude-sensitive instability, as is shown in Fig. 21.

Increasing values of Mh/a(a)2  , which represent increased relative

importance of the nonlinear aerodynamic terms, result inmonotonically

decreasing critical values of X The slopes of these curves at the

X axis give a measure of the importance of nonlinear aerodynamic effects.

Generally, they should all be zero for zero initial energy and decrease

as the initial energy increases, but the results in Fig. 19 suggest a

complicated picture, and any unsupported generalization must be viewed

with caution.
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VI. A NEW METHOD OF ANALYSIS

6.1 Kamel's Perturbation Method

Although'it produces a great amount of information, direct integra-

tion of the equations of motion has certain disadvantages. The informa-

tion produced is essentially similar to that produced experimentally, and

the analyst is forced to conduct a number of "numerical experiments" in

order to determine the influence of the system parameters on the panel's

behavior. Clearly, it would be extremely worthwhile to have a method of

analysis that would permit the direct analytical determination of the

information desired. For example, such a method would be very useful in

calculating an amplitude-sensitive stability boundary, such as the one

given in Fig. 18. What is desired, then, is an approximate method that

is capable of displaying analytically the influence of such parameters

as A  or iMh/a on this stability boundary. The perturbation method

of Kamel (Ref. 14), which was independently developed at Stanford con-

currently with the present work, appeared to be a likely candidate. A

brief description of this method follows; the reader is referred to

Ref. 14 for more details.

Consider a given system of ordinary differential equations written

in the following form:

c(;E) g(c,;e) = g-k) (6.1)

k=O

Here E is a small parameter, and g is assumed to depend analytically

on E ,.so that the Taylor-series expansion of Eq. (6.1) is valid. The

idea underlying Kamel's method is to transform the dependent variable

c(T) to a new set, c(T) , such that the transformed equations governing

this new set have certain characteristics. For example, to investigate

stability the analyst is interested in the asymptotic behavior of c(T)
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He would therefore construct the transformation so that the new dependent

variables display only the secular, or long-period, behavior of the sys-

tem. By doing so, the'analyst presumably also comes up with a much simp-

ler set of equations that he can solve analytically. This transformation

is of the form

c(T;E) = C-() +c k () (C T) (6.2)

k=l

such that c(T) satisfies

-+ k -+

_ CT;E) = k+ (6.5)dc kc. k +k-i(

k=O

for the initial conditions

c(T;o) =C (6.4)

The functions are to be determined from the requirement that the

transformed differential equations

k -+

c(T;E( CT;c) k' ?k(ct) (6.5)
k=O

contain only secular or long-period terms. The n are obtained by
n

eliminating these same terms from the governing differential equations

for the ~:
kk-

- (k) +' Ck-I . k -  -'k- g,k-, , k = 1,2,... (6.6)

£=12
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where

k

gk, I - C-Lmgk-m,l

m=l

L F =(6.7)

bc ac

_,_ _(k)

Ck k!' gO, k

Equations (6.6) and (6.7) form recursive relations for obtaining V
k

and , since all other functions in these equations can be constructed

from known quantities. This ability to obtain higher-order approximations

recursively is one of the principal advantages of Kamel's method.

With k and k calculated to any order desired, the original de-

pendent variables c can be found in terms of c in the form

-> k -> ->
cC + k (c) (6.8)

k=l

A recursive formula for the ck is

k-1
S-k-1 -

ck(c) = - ~(c) C C-1 c ,k-I(c) (6.9)

£=1

with

k

c- = - Cm-kL ckm (c) (continued)

m=l
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and

Lk k = k) (6.10)- co, k
ac

In summary, then, Kamel's algorithm proceeds by determining the

4k and k from Eqs. (6.6) and (6.7), to whatever order is desired.

The k are chosen so as to cancel secular terms from Eqs. (6.6). These

fk , in turn, give the differential equations for the transformed depen-

dent variables, from Eqs. (6.5). These equations are integrated, and

Eqs. (6.8)-(6.10) are used to determine the long-period behavior of the

system. This method is similar in spirit to the method of multiple time

scales, as applied by Morino (Ref. 15) to panel flutter.

6.2 Example - Two Modes

To illustrate the application.of Kamel's method, let us consider a

two-mode version of Eqs. (2.12), with R0 = 0 , Ap = O , and the two non-

linear aerodynamic terms that were previously found to be the most impor-

tant - those proportional to ( w;ax)2 and ( w/ x)( w/ t) . In addi-

tion, let = T(X) 2 , ak = ak(a)2 , and define

X-X€i - x

(6.11)

1 - (1 - ) = .1 + 2

Here allowance is being made for small perturbations from X X and

from R = O , so that X is the critical value of X for the linear

theory with no in-plane loading. If substantial values of R are re-
2 x

quired, then R/ can be treated as another fixed system parameter,

and terms involving it can be left with the other linear terms. With
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these scalings, Eqs. (2.12) can be written for two modes as

1 4 4
2 8

a + - a + -- - a = -- a1 1 1 2 2 1
M A 3 k

c c

(7+1) Nh -2 - 28 -2
al + - a

3 a(a)-2 52

(7 + 472

1 / a( -2g ) 2 --- al(al + a24 M a(a) a

c

= Q1 + C1  (6.12)

4 4

a2 + --2 + - a2 + - a 1 (E2 E i) a2
M c 3 c

8ET(7 + 1) Mh (y + 1)7l +) 2  Mh
a -la ala 2

15 a (a)2 M a ()

12"

-2 (al + 4a2

c

= + C2

Note that the dot superscript here denotes differentiation with respect

to T rather than T ; this notation is restricted to this Section.

The equations have been arranged so that all nonlinear terms are on

the right-hand sides. With the presumption that ak = O(1l) , these

terms are arranged as quadratic (Qk) and cubic (Ck) terms. For
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p/M = 0.01 , the characteristic equation of the linear system produces

c = 274.545 , and four roots -k and eigenvectors k = (1 ,Uk2)

arranged in complex conjugate pairs as follows:

01 = 1.736608 i

a2 = - 0.10 + 1.736606 i

a =  - 1.736608 i

4 = - 0.10 - 1.736606 i

U1 2  = 0.9978764 + 0.0651227 i

U = - 0.9978751 - 0.0651227 i

U3 2 = - 0.9978764 - 0.0651227 i

U42 = - 0.9978751 + 0.0651227 i

Since the nonlinear terms in Eqs. (6.12) contain time derivatives,

the equations must be manipulated so as to put them in a form suitable

for the application of Kamel's method. This is accomplished by vari-

ation of parameters. With a = , let

a() = ck( C ek, (6.13)
k=l

It is then required that

4

L k k e k (6.14)

k=l
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which implies

k e k = 0 (6.15)

k=l

Substituting'for the ak in terms of the ck in Eqs.. (6.12) yields

S cko ek k = =(Q + C Q2  C2 ) (6.16)

k=l

Equations (6.15) and (6.16) constitute four equations in the four new

dependent variables ck(' ) ; note that ck  does not appear in either

the Qk or the Ck , since from Eqs. (6.14) the ak depend only on

the ck . Equations (6.15) and (6.16) can now be inverted to give a

set of equations in the desired form:

k e [B]G) k ) 2)+ ... (6.17)

The matrix [B] is a 4 x 4 matrix whose inverse is

1 1 1 1

U 12 U22 U32 U42
[]-1 = (6.18)

(-1  02  4

lU2 72U2 2  T3U 2 aU4 2

and [GI is a 4 x 1 column matrix

(GIT = 0 Q1 + C1 2 
+ C2  (6.19)
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For example,

g1 e B1 Bl ( 2 c k ek Q{

c k=l

+ Blh - ) kUk, 2 e k +2 (6.20)

c k=l

Here Qk is used to denote that portion of Qk that is quadratic in the

ak and therefore quadratic in the ck
Clearly, Eqs. (6.17) cannot be integrated in closed form, although

presumably.they could be integrated numerically. A transformed set of

dependent variables is now sought that will exhibit the asymptotic be-

havior of the panel:

Ck = fl,k + f2k + ... (6.21)

The first step is to go to Eqs. (6.6) for k = 1 A typical equation

that results is

11 (1)
I 11 1) (6.22)

where g I is now written in terms of the ck rather than the ck

The function f1 1  is to be chosen so as. to eliminate secular terms from

Eq. (6.22). Examination of Eq. (6.20) shows that such terms will come

about only where k = 1 in the two summations, as a result of cancel-

lation of the exponentials. With the values of the -k being either

pure imaginary or complex with negative real parts, there are no other
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terms in Eq. (6.20) that could produce asymptotic instability. Hence,

fB -- - BI -- (E 2 -3i) 2  C (6.23)

c c

and similar reasoning for W 1 2 gives

f 12 - B -- - B 2  -- (- ) U2 2  c2 (6.2)

c c

For k =1 , Eqs. (6.6) then become

= e B1-- 2  c k e - Q

T c k=l
k/I

i+ 4 X (E 3-:1) ckU2, k e - Q2 , =1,2 (6.25)
c k=l

kfl

These equations are integrated to give the W1, for input to Eqs. (6.6)

with k = 2 , and f21 and f are chosen to eliminate any secular

terms. Cubic terms (g and g are involved, and the algebra

becomes formidable, so it will not be repeated here.. (it was, in fact,

performed on the computer.) The type of secular term that is found is

illustrated by the form chosen for f21

21 D2 I1 cl (6.26)

The paramete r D2 is a complex constant depending in a complicated man-

ner upon the system parameters and the elements of the matrix [B]

For the panel problem, this second pass through the algorithm is all
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that is needed, and the differential equation for cl can be written as

• -2
fl +  21 = D1C1 + D2 c2 cl (6.27)

Note that D1 is used to represent the coefficient of c1  given in

Eq. (6.23). Equation (6.27) has the solution

-2"D c lO 2D T D 1T+ie
c = 0  D (e - 1 e (6.28)

1 1,0 DR

where DkR is the real part of Dk and c 1 0  is the initial magnitude

of cl , Icl(0) . The phase angle 01(r) is given by (01,0 = e1 (0))

D Dc 2 D T
D e21 lin 1 2R2DIR (6.29)

1 1,0 2D c D
D2R 1,0 1R

It can already be seen that one important goal has been reached, in that

the dependence of the asymptotic behavior of the panel on the initial

conditions is explicitly displayed in Eq. (6.28).

Equations (6.8)-(6.10) are now utilized to construct the ck) ,

from which the ak(T) can be found from Eqs. (6.13). For the ck ,we

find

ck(t) = ck() - Wl,k(ck ' ) - W2,k(ck't)

WI, k (c k ' )SW1,k(Ck, T )  , k =1,2,0, (6.30)

ck

It is not necessary, however, to calculate all of the terms in these

equations, if stability is of interest. All that is necessary is to

36



examine the secular terms, which are contained in ck(t) . This fact,

coupled with' the requirement that the transformations of Eqs. (L.15)

produce real ak  from complex ck, k and , permits the asymp-

totic behavior of the system to be examined very easily. For example,

the asymptotic behavior of al is given by

a ) 2Re c e Ull = 2Re e (6.31)

Using Eq. (6.28) gives

D T D c 2
1R 1R

al 2 ,0 e 1- e - cos ( + DI T +

1R
(6.32)

with aI = . This equation can be manipulated to give

DR 2R 1R

Scos 
+ D +

-2 (6 3
1,0

where DR DIR/D2R . The initial amplitude C1, 0  is seen to be one

half of al(0) . The parameter D1 is linear in Ei and E2 ,while

D2 does not depend on E or E2 , so it can easily be shown that al

can be expanded in a power series in El , as was assumed initially

(E2  is assumed 0(1)) . The parameter Mh/a(Ce)2 , which is the prin-

cipal parameter governing the amplitude-sensitive instability, influences

only D2
The stability characteristics can be evaluated by examining the

amplitude term in Eq. (6.33). A number of cases can be distinguished:
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I. D < :

For T = O , both numerator and denominator are negative, so
-2

the ratio is positive. If C1, 0  - DR , then a limit cycle

of constant amplitude 1,2c0 is obtained, regardless of the

sign of D1R

A. D1R < :
1R

f 10 < IDR , there is a limit cycle whose ampli-

tude approaches 2c as T approaches infinity.
--2 1,0

If C1, 0 > IDRI , then there is a divergent insta-

bility at a finite time

In i + ----

1,0
D

2DR
1R

B. DIR > 0 :

There is a limit cycle whose amplitude approaches
2- -2

(- DR) , independently of the magnitude of C, 0

II. DR > 0 :

For = 0 , both numerator and denominator are positive.

A. D1R < :

Stability is indicated, since a1 -0 as T - .

B. D1R > :

There is a divergent instability at

n +DR
-2

D

2D1R
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Note that D will change sign, since it is proportional to E1 r which

changes sign as X goes through X
c

For a numerical example, let R 0 , so that = - l . With
1 x 2

Mh/a(a) 2 = 0.158 , we find

D = (11.76 - 0.5300 i) e, D = - 6.563 - I.0 i

For X < ,c . < 0 , so this is case IIA. The panel is stable; no

amplitude-sensitive instability can occur. The sign of D1I indi-

cates an increase in frequency. For X > X , E > 0 , and case IB is

applicable - there is a limit cycle whose amplitude is independent of

C1, 0  , and the frequency is reduced from its value at X =2 X . (Note
-2 C

that the special case 0 =DRI does not alter this. conclusion.)

Although this numerical example did not produce an amplitude-

sensitive instability, there are parameter regions where such an insta-

bility will be found. The conclusions-reached above are consistent with

physical intuition, in that the changes in frequency and the character

of the supercritical limit cycle are what would be expected in the absence

of amplitude-sensitive instability.
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VII. CONCLUDING REMARKS

It has been shown theoretically that, under proper conditions, non-

linear aerodynamic loading can produce unstable panel motion in a param-

eter region that would be a stable one on the basis of a model with lin-

ear aerodynamics. The principal factors in determining the likelihood

of such an instability are the excitation level that the panel is ex-

pected to encounter and the importance of the nonlinear aerodynamic

loading in comparison with the stabilizing effect of in-plane stretching

in the panel. The latter factor is measured directly by the interaction
1

parameter Mh/a(a) . For a given initial excitation, the critical

value of X varies quite smoothly with this parameter. On the other

hand, the dependence of the instability on the nature of the initial

conditions is quite complicated. This particular conclusion should not

be too surprising, since the system itself is far from simple.

To the best of the author's knowledge, amplitude-sensitive flutter

has not been observed experimentally, at least for flat or slightly

curved panels. Behavior of this sort is consistent with that noted in

the experiments of Ref. 1. However, attempts to reproduce this behavior

theoretically, with system parameters based on the experiments, were not

successful.

Since the type of panel considered here is far from a realistic one,

no firm conclusions can be drawn regarding the practical impact of non-

linear hypersonic loading. However, it is clear that any assessment of

this effect should include an accurate determination of the true in-plane

restraint condition. A flat panel of finite span, which is also stabilized

by stretching in the spanwise direction, should be less susceptible to non-

linear hypersonic effects in comparison with its two-dimensional counter-

part. The introduction of curvature, particularly as far as shells are

concerned, presents a different situation. It has been found (Ref. 16)

that a nonlinear structural shell model, with linear aerodynamic loading,
exhibits a "softening" nonlinear behavior of the same type as is produced
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by nonlinear aerodynamic loading for the flat panels studied in this

paper. The introduction of nonlinear aerodynamic loading into a shell

analysis could very well reinforce significantly this behavior. Finally,

there is the question of viscous aerodynamic effects. Within a linear

framework, viscous effects on panel flutter are generally thought to be

most important for Mach numbers near unity (Ref. 17). It is simply not

known if this situation will change when nonlinear aerodynamic loading

is significant.

A new perturbation method for nonlinear oscillations has been ap-

plied to a two-mode model of a panel with hypersonic aerodynamic loading.

This method is capable of generating recursively approximations to the

asymptotic behavior of the panel. The differential equations produced

are simple enough to be integrated analytically, although the algebra

involved is quite complicated. Fortunately, there is enough organiza-

tion to the algebra that it can be performed relatively easily by com-

puters. Once this software is set up, parameter surveys can readily be

performed, and the variation of the panel stability characteristic with

system parameters is displayed with enhanced clarity in comparison with

the information obtained from direct integration. Although the analyti-

cal results are capable of demonstrating the amplitude-sensitive insta-

bility, the one numerical example that was attempted indicated that for

the parameters chosen this instability would not occur. A final judgment

concerning the utility and accuracy of the perturbation method must await

detailed comparisons between the new method's predictions and those ob-

tained from direct integration.
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Figure 1. Two-dimensional panel (plate-column) on hinged supports.
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Figure 2. Dimensionless panel displacement at x = 0.75a vs. 'dimen-

sionless time T; = o0, = 0.01 = 1.0, N = 6,

a1 (O) = 0.1, linear aerodynamic terms.
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Figure 3. Continuation, response of panel of Fig. 2.
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Figure 4. Dimensionless panel displacement at x = 0.75a vs. dimen-

sionless time T for zero system damping; A = 400,

- 0.0, = 1.0, N = 6, al(O) = 0.1, linear aerody-

namic terms.



d

I

I" 3.2 3.4 3.6 TAU 3.8 .0

Fiure Continuationresonse of anel of Fi. 4.

Figure 5. Continuation, response of panel of Fig. 4.
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Figure 6. Dimensionless panel displacement at x =0.75a vs. dimen-

sionless time T for zero system damping; h = 400,

S= 0.0, = 1.0, N = 6, al(0)= - a2 () = 0.01, linear

aerodynamic terms.
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Figure 7. Dimensionless panel displacement at x = 0.75a vs. dimen-

sionless time T for zero system damping; ? = 546.1,
= 0.0, a = 1.0, N = 2, al(0) = - a2 (0) = 0.363, linear

aerodynamic terms.
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Figure 8. Dimensionless panel displacement at x = 0.75a vs. dimen-

sionless time T for zero system damping and subcritical

A0, = 0.0, = 1.0 N = 6, al() =- a2(0)

= 0.1, linear aerodynamic terms.
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Figure 9. Response of panel of Fig. 8 with different initial condi-

tions - a(O) = - a2 (0) = 0.5.
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Figure 10. Dimensionless panel displacement at x = 0.75a vs. dimen-

sionless time r; = 3550, = 0.0 1, a = 0.0, N = 6,

S = 0.05, a(0) = - a2 (O) = 1.71, linear aerodynamic

terms plus term proportional to ( 2 from (Fz)k.
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Figure 11. Response of panel of Fig. 10 with slightly greater initial

conditions - a1 (O) = - a2 (0) 1.72.
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Figure 12. Maximum absolute value of dimensionless panel displacement
w at x/a = 0.75 versus dimensionless dynamic pressure X;
N = 6, R = 0, a = 1, pL/M = 0.01, Ap = 0, Mh/a - 0.05.
Nonlinear aerodynamic loading Tade up of piston-theory
terms proportional to ('/3x) and (M/8x)(M/8t).
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Figure 13. Maximum absolute value of dimensionless panel displacement

w at x/a = 0.75 versus in-plane restraint parameter a ,

for X = 550. Other parameters and curve legend same as

in Fig. 12.

56



80
LINEAR AERO.

x  0 -- - NONLINEAR AERO.

40

-40 /
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Figure 14. Dimensionless stress or at z = ±h/2 versus chord distance

x/a, for a = 0.1, X =x550, and other parameters as listed
for Fig. 12. Stress distributions correspond to peak displace-
ments plotted in Fig. 13, with that due to nonlinear aerodynamic
loading calculated for negative (into-cavity) peak.
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Figure 15. Linear stability boundary for a panel (plate-column) on
hinged supports. Ordinate is dimensionless dynamic pressure,
abscissa is dimensionless in-plane applied load (negative
when panel is in compression). (After Ref. 11.)
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Figure 16. Dimensionless panel displacement w at x/a = 0.75, versus
dimensionless time 7, for point A in Fig. 15 after R
increased from point B; N = 6, X = 260, a = 0.1, /M = 0.01,
Ap = 0, Mh/a = 0.05, nonlinear aerodynamic loading given by
piston-theory terms proportional to ( /,x) 2 and (8/2x)
( / t).
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Figure 17. Variation of initial values a (0) = -a (0) with dimensionless
in-plane applied load Rx for O = 0.1 , E0 = 1750.
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Figure 18. Comparison of linear and nonlinear stability boundaries. N = 6, 4/M = 0. 01, 1Vh/a = 0. 05,

a = 0. 1, Ap = 0, E = 1750 with a 1 (0) = -a 2 (0) A 0, nonlinear aerodynamic terms
proportional to (W/ax) 2 and (8W/x)(8W/at).
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Figure 19. Variation of critical value of X with initial energy and modal content for Rx = 0; other
parameters same as in Fig. 18.
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Figure 20. Variation of critical value of X with dimensionless static
pressure difference for fixed initial conditions. R = 0;
other parameters same as in Fig. 18.
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Figure 21. Variation of critical value of X with nonlinear interaction

parameter for E = 1750, other parameters same as in
Fig.. 18.
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